c06fpf
c06fpf
© Numerical Algorithms Group, 2002.
Purpose
C06FPF Multiple 1-D real discrete Fourier transforms
Synopsis
[x,trig,ifail] = c06fpf(x<,trig,init,ifail>)
Description
p
Given m sequences of n real data values x , for j=0,1,...,n-1;
j
p=1,2,...,m, this routine simultaneously calculates the Fourier
transforms of all the sequences defined by:
n-1
^p 1 -- p ( 2(pi)jk)
z = --- > x *exp(-i -------), k=0,1,...,n-1; p=1,2,...,m.
k _ -- j ( n )
\/n j=0
1
(Note the scale factor --- in this definition.)
_
\/n
^p
The transformed values z are complex, but for each value of p
k
^p ^p
the z form a Hermitian sequence (i.e.,z is the complex
k n-k
^p
conjugate of z ), so they are completely determined by mn real
k
numbers (see also the Chapter Introduction).
The discrete Fourier transform is sometimes defined using a
positive sign in the exponential term:
n-1
^p 1 -- p ( 2(pi)jk)
z = --- > x *exp(+i -------).
k _ -- j ( n )
\/n j=0
To compute this form, this routine should be followed by a call
^p
to C06GQF to form the complex conjugates of the z .
k
Parameters
c06fpf
Required Input Arguments:
x (:,:) real
Optional Input Arguments: <Default>
trig (:) real zeros(2*size(x,2),1)
init (1) string c06fpf04(trig)
ifail integer -1
Output Arguments:
x (:,:) real
trig (:) real
ifail integer